TITLE
Nannochloropsis oceanica biomass enriched by electrocoagulation harvesting with promising agricultural applications

JOURNAL
Bioresource Technology Reports

AUTHORS
Daniel Figueiredo, Alice Ferreira, Florinda Gama, Luisa Gouveia

ABSTRACT
Electrocoagulation is a promising technology to harvest and concentrate microalgae while saving costs on secondary dewatering steps. However, the sacrificial electrodes release salts that impact the media and the harvested biomass. This study evaluated the effects of Fe, Zn, and Mg electrodes on Nannochloropsis oceanica harvesting and elementary composition of biomass and supernatants. Moreover, plant bioavailability of electrocoagulation minerals attached to biomass was assessed in the tomato plant model Solanum lycopersicum (cv. ‘Cherry’). Fe electrodes had better performance at lower power consumption and operation costs, followed by Zn and Mg. Electrocoagulation changes biomass and supernatant nutrient composition. Electrodes precipitated Mg and Ca from the nutrient media, enriching N. oceanica biomass, but increased Pb 2–4 times and depleted P in supernatants. Finally, Fe and Mg electrode metals in the biomass were proven bioavailable to S. lycopersicum seedlings, making electrocoagulation harvested biomass a promising bioresource to agricultural applications.

Back to Publications